
Chapter Two – Data Driven Spots – Algorithm and Implementation 

Introduction 

The Data-Driven Spots (DDS) visualization technique displays sets of single-valued 

functions, Fk(x,y), overlaid in a single multi-layer image.  Each function is sampled spatially by a 2D 

array of Gaussians (Gaussian sampling array) before display, which reduces visual obstruction of one 

variable by another.  The sampled function may be displayed either as a semi-transparent colored 

layer over a gray surface (DDS alpha-blending) or as bumps that protrude from the surface (DDS 

bump-mapping).  When the variable is displayed with transparency, high data values increase the 

opacity of the layer, i.e. the saturation when combined with the gray background.  When the variable 

is displayed with a bump-map, high data values increase the apparent height of the bumps.  Examples 

of three different data sets are shown on the next pages. 

 

Figure 2.1 presents an example with the habitat ranges of the Mexican free-tailed bat and the 

Eastern red bat.  The data is binary (having only two values) with values of 1 where the bats are found 

to live and 0 otherwise, as shown in the upper left.  The two bats share habitat only along the South-

east and Gulf coasts, as far west as Texas.  The data is publicly available from the National Atlas of 

the United States [2003].   

 

Figure 2.2 presents an example of a scanning electron microscope (SEM) image of a 

geological sample that was processed to reveal the composite elements; in the example two elements, 

iron and sulfur, are shown.  The iron layer has 32 distinct values, the sulfur layer has 87 distinct 

values; both range in value from 0 to 1.0, much of the variation in the data is due to the substantial 

amount of noise present in the data.  The SEM data was given to our research group by colleagues at 

EDAX, Inc [2003]. 

 

Scanning electron microscopes (SEM) and atomic force microscopes (AFM) scan a sample in 

a raster pattern and acquire data values at each grid point location – thus the data does not need 

resampling to fit the i,j grid points.  A typical grid resolution for an SEM is 500x500 data values; for 

an AFM, 300x300 data values.     
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Raw Input Image      Gaussian Sampling Texture  Sampled Image   

      
 

      
 

 
Figure 2.1:  The images in the top row show DDS alpha-blending for the habitat range of the Eastern red bat, 
the images in the middle row show DDS bump-mapping for the habitat rage of the Mexican free-tailed bat.  The 
bottom image shows the two DDS layers combined.  The data is from the National Atlas of the United States 
[2003]. 
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Raw Input Image   Sampled Image 

 

 

 
Figure 2.2:  DDS images of scanning electron microscope data.  The layers are two different elements, iron, 
shown in the top row, and sulfur, shown in the middle row.  Both are displayed with DDS alpha-blending. 
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Figure 2.3 illustrates data of numbers of beef and dairy cattle per square mile for each of the 

48 continental states.  There are 44 distinct values of beef cattle and 33 distinct values of dairy cattle 

for the 48 continental states.   The data in Figure 2.3 is from the 1990 census; it is publicly available 

at the U.S. Census Bureau [2003]. 

 

US population data is an example of data that is not acquired at regular grid points – simply 

because houses are not regularly spaced across the country.  US census tracts are clustered around 

cities and widely spaced in rural areas.  How census data should be resampled to fit a regular grid 

depends on what resolution or what level of detail the person viewing the information wants to see.  

One common method is to average the data within counties, an example of a chloroplethic map.  

However there is a cost to averaging the data in that the rural-urban boundary may be blurred.   

 

Before data is displayed with either DDS alpha-blending or DDS bump-mapping the data 

values are normalized to fall in the range of 0 to 1 for alpha-blending or, if the data has negative 

value, -1 to 1 for bump-mapping.  Whether different functions, Fk(x,y), within a given set are 

normalized independently, based on the individual ranges for each Fk(x,y), or normalized as a set, 

based on the overall range of values across all k functions, depends on both the nature of the data and 

the goal of the visualization.  Take the SEM data as an example; because the amount of sulfur and 

iron are elements of a composite whole, if amounts of sulfur and iron are normalized independently, 

then it is not possible to compare the relative amounts of sulfur and iron.  It is necessary to have unit 

compatibility before two functions are normalized together.  For example, temperature and pressure 

are not measured in the same units and therefore cannot be normalized together.  Variables that 

represent parts of a whole, such as the numbers of different ethnic populations in a city, must be 

normalized together.  Variables that are not parts of a whole, such as the numbers of dairy cattle and 

the numbers of beef cattle, can be normalized separately or jointly. 

 

The number of levels in a single data set that can be perceived and understood by the viewer 

is influenced by a variety of factors – the display technique used to display the data, the viewing 

conditions, various properties of the data itself, and, ultimately, by the person viewing the image.  

Although a data image may contain many different levels (87 is the most levels in the examples 

above), the number of levels a person can accurately distinguish, and therefore the number of 

different data values that person can potentially process, may be quite less.   
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Figure 2.3:  The top row is beef cattle and dairy cattle per square mile, from the 1990 census.  The bottom 
image shows the two layers combined: red bumps for beef cattle and smaller, blue, bumps for the dairy cattle.  
The data is from the 1990 census; it is publicly available at the U.S. Census Bureau [2003]. 
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Grayscale color maps are commonly used to display data; they are easy to implement, and 

intuitive for the viewer.  Grayscale color maps are considered the most direct mapping of scalar data 

to display, with the minimal loss of information.  However, Pizer and Zimmerman [1983] and Pizer 

[1985] have shown that the perceived dynamic range for images displayed using a perceptually 

linearized grayscale color map is only about 90 (measured in the number of jnds, or just noticeable 

difference levels).  They compare this result to the perceived dynamic range for the blackbody color 

map, which they found to be 120.  Figure 2.4 shows grayscale, red-blackbody, and blue-blackbody 

color displays of an AFM image of adenoviruses and DNA. 

 

   
(a)    (b)    (c) 

 

   
(d)    (e)    (f) 

 
Figure 2.4:  Grayscale, red-blackbody, and blue-blackbody color renderings of a AFM images of adenoviruses 
and DNA.  Images a-c show height mapped directly to color, using the full height range, which is 
approximately 0-100nm.  In the bottom row, images d-f, only the height range from approximately 0-30nm is 
mapped to the color whereas higher values are clamped at the maximum color.  The DNA is much easier to see 
in the bottom row of images. 
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Whatever color map is used to display the data, Pizer et al. argue that equal changes in the 

recorded intensity must be perceived as equal changes in the displayed intensity, not just for some 

ranges of the color map, but across the entire mapping.  In other words the color mapping must be 

perceptually linear [Pizer and Zimmerman, 1983].   

 

Perceptually linearizing color maps turns out to be a tall order, and the downfall of using 

grayscale or other color maps, such as the blackbody color map, is the perceptual phenomenon of 

color contrast: “The most obvious relevance of contrast effects to visualization is that they can result 

in errors of judgment during the reading of quantitative (value) information that is encoded using a 

gray scale” [Ware, 2000, page 80].  Figure 2.5 shows an example of color contrast for both a 

grayscale color map (based on [Ware, 2000]) and a blackbody color map.  In the figure all four 

vertical gradients are numerically identical – the visual shift in the gradients is caused by the 

background gradient and is a purely perceptual phenomena.  It is difficult to believe that this is true – 

only by covering the background can one convince oneself.   

 

     
(a)             (b) 

Figure 2.5:  The intensity contrast gradient (a) based on [Ware, 2000] shows one problem with using gray 
values to display data.  Each of the vertical intensity gradients is identical, but they look dramatically different 
due to color contrast effects caused by the background gradient.  When gray values are used to display data, two 
data points of equal value displayed with the same grayscale value may not be perceived as equal if they are 
surrounded by different gray values.  The blackbody color map as in (b) also shows color-contrast effects.  
Understanding human visual perception is key to creating successful data visualizations. 
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Contrast effects can also be seen in gradients defined with saturation, which DDS uses to 

display value information.  When gradients defined by saturation but distinguished by different hues 

are displayed simultaneously, contrast effects are not seen.  Figure 2.6 shows four examples: image 

(a) uses the same color for both foreground and background gradients; (b) uses different colors; (c) 

contrasts the two target colors used Color-Color session of the pilot study and (d) contrasts the two 

target colors used in the Color-Color session of the main study.  One might speculate that the greater 

the angular distance in hue (defined in the HLS color space) the less the gradients suffer from contrast 

effects.  The colors in 2.6 (c) have a smaller angular distance in hue than the colors in (d) and the 

effect is stronger.   

 

Sampling the data spatially with the Gaussian spots and then applying multiple layers in an 

image, so that spots are on top of other spots that differ in hue, might actually reduce color contrast 

effects; DDS may present a new way of looking at data that minimizes error caused by color contrast.   

 

The goal of any visualization technique is to maximize the information the viewer can see 

and understand accurately.  To achieve this goal, human visual perception must be taken into 

consideration; this is an important theme that runs throughout this dissertation. 
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(a)      (b) 

 

   
(c)      (d) 

 
Figure 2.6:  Contrast effects in saturation.  When the hue is the same for the foreground and background 
gradients, as in (a), the foreground gradients do not appear the same due to strong contrast effects.  When the 
hue is different for the foreground and background gradients, as in (b), the contrast effect is reduced.  The two 
target colors used in the Color-Color session of the pilot study are shown in (c) and the two target colors used in 
the Color-Color session of the main study are shown in (d).   Lower contrast effects could be a side-effect of 
DDS sampling, as Gaussian spots only overlap other Gaussians with different hues. 
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Gaussian Sampling Arrays 

Gaussian Function 

A single circularly-symmetric 2D Gaussian is generated from a binormal density function 

with two equal standard deviations σ1=σ2 (equation 2.1, Figure 2.7).  The Gaussian spot is centered in 

the image at x=µ1, y=µ2.  Before they are used to sample the underlying data, different Gaussians are 

normalized so Gaussians with different standard deviations all have the same maximum value of 1.0 

at the center.  The normalized Gaussian value is 0.61 at one standard deviation; it is 0.14 at two 

standard deviations; and 0.01 at three standard deviations.   

Placement of the Gaussians in the Sampling Array 

All Gaussians in any particular sampling array have the same standard deviation.  One 

Gaussian is generated per array and is placed repeatedly in the array, where each center location is a 

randomly chosen integral i,j point.  The details of generating a Gaussian sampling array are described 

below. 

 

First, the number of Gaussians, N, is determined.  N is a function of both the size of the 

Gaussian sampling array (image dimensions width and height in pixels) and the standard deviation of 

the Gaussian (equation 2.2).  The constant C controls the maximum density of the Gaussians, for the 

examples presented in this dissertation it was set to 32. 

 

N = width*height / (C * σ2)        2.2 
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Figure 2.7:  Single Gaussians with standard deviation equal to two, four, eight, and sixteen pixels. 
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The placement algorithm sequentially creates potential (i,j) coordinates at which to add a new 

Gaussian to the array, using a pseudo-random number generator with uniform distribution.  The 

coordinates are checked against each of the existing Gaussians currently in the array.  If the new 

coordinates place the Gaussian at least 4.5 standard deviations from each of the others, it is added.  

Otherwise, it is discarded and new coordinates are created.  This process repeats until all N Gaussians 

have been added to the array. 

 

As 4.5 standard deviations is chosen to be the minimum distance between the center points of 

two Gaussians, closest Gaussians will intersect at 2.25 standard deviations, where each Gaussian 

value is 0.08.  At this intersection between spots, the maximum level of opacity is 0.16.  Most spots 

are placed greater than 4.5 standard deviations apart, producing regions of greater transparency (less 

opacity) between spots. 

 

For the examples presented in this dissertation all layers had the same minimum spacing of 

4.5 standard deviations and the same constant C=32.  Choosing these numbers was an empirical 

process.  If the number of spots in an image depends only on the standard deviation and a minimal 

distance, then the spots are tightly packed in the image – creating a less random-looking spot 

distribution.  Instead, by setting the number of spots less than the maximum that could fit in the 

image, and by setting the minimum spacing less than that required by a uniform density, the 

placement algorithm has the freedom to pack spots tightly in some regions of the image and sparsely 

in other regions of the image, producing a more random-looking spot distribution.  Figure 2.8 shows 

four examples of Gaussian sampling arrays with different standard deviations. 

 

In the development of DDS, I observed that the randomness of the spot spacing was 

important.  A reaction-diffusion technique [Turk, 1991; Witkin and Kass, 1991], which places spots 

in a naturalistic way, turned out to be not random-looking enough because circular, ring-like patterns 

of spots appeared.  These spurious patterns could be distracting to the viewer.  The technique 

described here is an improvement in that no repeatable patterns in the spots appear.  Figure 2.9 

compares the spot patterns generated with the reaction-diffusion technique and the random technique 

described here. 
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Figure 2.8:  Gaussian sampling arrays with standard deviation equal to two, four, eight, and sixteen pixels.  The 
placement algorithm is meant to distribute the spots in a random fashion, so that some areas of the textures are 
denser and some are sparser. 
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The reaction-diffusion technique grows patterns of spots in a process that simulates how spot 

patterns such as that of a leopard’s coat occur in nature.  In the texture generation process, each spot 

influences the spots that surround it.  Spot spacing is regular and produces spurious patterns in the 

data.  In addition, the spots do not all have a uniform shape or intensity, as the Gaussian spots do, 

instead, oblong spots can form and some spots are brighter than others (Figure 2.9b).  The Gaussian 

spot arrays allow for more control over spot shape, intensity, and inter-spot distances and pixel gray 

scale values, as well as for a more random-looking spot distribution. 

 

The Gaussian sampling technique was implemented after the experimental evaluation of 

DDS, which uses trial images with reaction-diffusion spots.  The experiment shows that the reaction-

diffusion spot layers displayed with alpha-blending are visually separable in multi-layer DDS images 

and that participants are able to accurately perceive shapes sampled with reaction-diffusion spot 

layers.  However, the benefits of more uniform spot shape and intensity, less regular spot placement, 

and direct control over spot density make the Gaussian sampling technique more appropriate for 

DDS.  In Chapter Three, two trial images are compared, one with reaction-diffusion spot sampling 

and one with Gaussian spot sampling. 

 

     
(a)      (b) 

 
Figure 2.9:  Comparison of Gaussian sampling array (a) with the reaction-diffusion textures (b).  The two 
images are comparable in the size of the spots. 
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Once the coordinates for all Gaussians are known, the single Gaussian image is added to the 

array at each coordinate location.   The Gaussian sampling array is processed so that the image forms 

a torus, i.e. the edges of the array wrap around and connect – the top edge wraps to the bottom edge 

and the left to the right.  This attribute of the Gaussian array means that it can be used in standard 

computer graphics texture mapping and stretched and shrunk without causing artifacts.  Because the 

Gaussian sampling array is on a torus, Gaussians that fall on the edge wrap around to the opposite 

side.   

 

Generating the Gaussian sampling array as a function of the standard deviation – which 

determines the number of Gaussians for a given array size as well as the minimum distance between 

Gaussians – has several benefits.  The density of the texture, as measured by the number of pixels 

with grayscale value above a certain threshold, is independent of the standard deviation.  The average 

value of the Gaussian texture is also independent of the standard deviation.  Table 2.1 lists densities 

as well as the average pixel intensities as a function of standard deviation σ.   

 

A smaller standard deviation yields smaller, more numerous, Gaussian spots, while a larger 

standard deviation yields larger, less numerous, Gaussian spots.  Because the data is sampled by each 

pixel within the Gaussian spots, a smaller standard deviation leads to a more uniform sample 

distribution, and a larger standard deviation leads to more clustered sampling. 

 

Standard deviation, σ, in pixels 2 4 8 16 32 64 

Number of spots 8192 2048 512 128 32 8 

Average pixel distance between 

Gaussians centers 

9.67 19.37 38.9 77.9 158 312 

Density (% pixels  

above 2 standard deviations) 

0.76 0.76 0.76 0.76 0.76 0.77 

Average pixel intensity 0.196 0.196 0.196 0.196 0.196 0.196
 
Table 2.1:  Descriptive statistics of the Gaussian sampling arrays for a variety of Gaussian standard deviations.  
Gaussian sample array image size was 1024x1024 pixels. 
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Visual Perception and Gaussian Sampling Arrays 

It is interesting to compare the Gaussian sampling array images to texture images studied in 

the perceptual psychology literature.  Much work had been done in the study of human texture 

perception, and that work can guide how textures should and should not be used in data visualization 

and can predict the suitability of the Gaussian sampling arrays for data visualization. 

 

Julesz et al. have written extensively about texture characteristics [Julesz, Gilbert, and Shepp, 

1973; Julesz, Gilbert and Victor, 1978; Julesz, 1981; Julesz and Krose, 1988].  Julesz et al. [1973] 

define a set of statistics to describe the visual properties of texture images.  The first three statistics 

are: 1.  the average darkness of a texture area; 2.  the probability that both ends of a dipole land on 

black points; and 3.  the probability that all three points of a triangle land on black points.  An 

important property of this statistical definition of texture is that two textures that have the same higher 

order statistic (i.e. two textures with the same third-order statistic) are guaranteed to have the same 

lower-order statistics.  The converse is also true: if two textures differ in the second order statistic 

they will differ in the third-order statistic.  The authors found that people could not visually 

discriminate textures that were identical in the first- and second-order statistics but different third-

order statistics.  In order for textures to be visually distinct, they must differ in at least the second or 

first-order statistics.   

 

The Gaussian sampling arrays all have the same first-order statistic – they all have the same 

average image intensity.  The probability that both ends of a dipole will land on a black value depends 

on the spatial distribution of the white and black pixels – this will be different for the Gaussian 

sampling arrays with small spots than for the Gaussian sampling arrays with large spots (see Figure 1 

in Julesz [1973]), thus the Gaussian sampling arrays differ in the second-order statistic and are 

therefore visually distinct based on the evidence of Julesz et al. [1973]. 
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Julesz [1981], after discovering textures that were easily distinguished despite the fact that 

they had identical first and second order statistics, revises his theory on texture discrimination based 

on the statistical properties of textures.  His further investigations led him to the conclusion that 

texture discrimination is based solely on first-order statistical differences of locally conspicuous 

features – features he calls textons.  Textons are defined as elongated blobs of a given width, with 

three important properties: color, shape (orientation and length), and the presence of terminators (end-

points of the elongated blobs).  Textures that can be described in terms of different texton properties 

will be visually distinct – for example, textures that differ in color will be visually distinct, as will two 

textures that do and do not have terminators.  The Gaussian sampling arrays do not have terminators, 

however two Gaussian sampling arrays will differ in either color or size. 

 

The Brodatz album [1966] is a series of over a hundred photographs of both manmade and 

naturally occurring textures.  While the work of Julesz focuses on mathematically defined textures, 

Brodatz and others try to determine what visual characteristics of everyday textures are important.  

Figure 2.10 presents photographs I took that are similar in nature to the ones found in the album.  The 

Brodatz album includes man-made textures of woven fabrics and naturally occurring textures such as 

pebbles on a beach, the bark of a tree, or piles of leaves.   

 

Several researchers have used the images in the Brodatz album to further investigate the 

visual dimensions of texture, specifically the characteristics people use to classify the images.  

Tamura, Mori, and Yamawaki [1978] presented pairs of images from the Brodatz album to people 

and asked them to rate the two images along six different scales.  They found that the dimension 

along coarse to fine was a strong distinguishing factor.  Rao and Lohse [1992, 1993] applied 

multidimensional scaling techniques to analyze how people clustered images from the Brodatz album.  

The authors identified three orthogonal dimensions important for texture perception: repetition, 

orientation, and complexity or granularity.  Liu and Picard [1994], also using images from the 

Brodatz album, develop a mathematical analysis of the textures.  They found their method of 

mathematical decomposition identified the same three perceptual dimensions in the textures that Rao 

and Lohse found people use: periodicity (regular versus random), orientation, and scale (feature size). 
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Spot noise [van Wijk, 1991] is a texture-generation technique that can be used to create 

textures with the properties found in the Brodatz album.  Natural-looking textures are generated by 

convolving a uniform pattern, such as an “S” or “+” shape with a field of white noise.  Figure 2.11 

show some examples.  The resulting image contains the repetition of the uniform shape, but with the 

appearance of slight random variations found in natural textures.  The benefit of spot noise techniques 

is that each dimension – repetition, orientation, complexity – can be controlled by a separate input 

parameter when generating the textures.   

 

 
 
Figure 2.10:  Photographs based on images from the Brodatz album [1966].  The top row has textures found in 
nature, and the bottom row has textures that are man-made. 
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Before the development of DDS, our research group looked into using spot noise techniques 

to generate textures to display data.  The idea was that the underlying data values would determine 

the parameters of the spot noise functions for each (x,y) location in the image.  This is similar in spirit 

to the glyph, or icon, based data visualization techniques, which will be described in more detail in 

Chapter Four.  The basic idea is that the data to be displayed is used as input parameters to a texture-

generation technique, either as the parameters of a spot noise texture, or as the parameters for length 

and orientation of a stick-figure glyph.  The final images clearly show patterns in the data – 

represented by areas in the texture that have different texture dimensions and visual properties.  The 

reason we chose not to pursue this further is that the goal for DDS was that each of the original data 

variables remain visually distinct in the final image – a property that is true of neither the spot noise 

nor glyph techniques.  However, spot noise is particularly good at illustrating fluid flow [Cabral and 

Leedom, 1993; de Leeuw and van Liere, 1998]. 

 

      
(a)       (b) 

 
Figure 2.11:  Examples of spot noise textures.  Texture (a) was created by convolving a ‘+’ rotated 45° with an 
image of uniform white noise.  Texture (b) was created by convolving a rotated ‘S’ with the same image of 
uniform white noise.  Both textures contain the repetition of the original pattern, but with a natural-looking final 
result. 
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The reaction-diffusion textures described in [Turk 1991; Witkin and Kass, 1991] also produce 

natural-looking textures, Figure 2.12 shows two examples based on stripe patterns.  Reaction-

diffusion models the cellular differentiation in organic systems through a process of chemical reaction 

and diffusion.  The original model, introduced by Turing [1952], describes the formation of biological 

patterns based on initial concentrations of chemicals that both diffuse throughout the system and react 

to one another until stability.  Patterns emerge due to the different rates at which the chemicals 

diffuse.  Patterns generated by the reaction-diffusion model have been compared to patterns found in 

nature such as the stripes and spots on cats, zebras, and giraffes [Witken and Kass, 1991]. 

 

While neither Turk [1991] nor Witkin and Kass [1991] address the idea of using reaction-

diffusion systems for displaying data, this was one of the first directions we took in our lab for 

visualizing multiple scalar fields in a single image.  Reaction-diffusion models both the initial 

chemical concentration across a surface and the rates of diffusion or reaction of the chemical layers, 

which can be different at each point on the modeled surface.  Reaction-diffusion can visualize data by 

using that data to set the values for the chemical concentrations and diffusion rates and producing a 

spot or stripe image based on those values.  It is difficult to say what reaction-diffusion shows in the 

data, the hope is that underlying patterns emerge that correlate with data values.   

 

     
(a)              (b) 

 
Figure 2.12:  Reaction-diffusion stripe patterns.  Stripes did not layer as well as spots in our investigations. 
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Ware and Knight [1992, 1995] termed orientation, size and contrast the Primary Orderable 

Dimensions of visual texture.  Ware’s work has bridged the fields of perceptual psychology and data 

visualization.  In his work in the field of data visualization he has investigated using display elements 

based on Gabor functions, which are the product of a sine wave grating and a circularly symmetric 

Gaussian.  The Gabor functions were chosen because they simulate the receptive fields of neurons in 

the early visual system that are tuned to orientation detection.   

 

Ware and Knight [1995] map up to three spatial variables to the orientation, size, and contrast 

parameters of the Gabor function, which is used to randomly sample the variables in space, similar to 

DDS but much more densely packed.  The authors claim that these three texture characteristics are the 

primary dimensions in texture perception, in that variations in orientation, size or contrast, will be 

more visible than variations in other texture dimensions, such as regularity and symmetry [Ware and 

Knight, 1995].  This technique is useful for displaying static images of flow fields, and the authors 

demonstrate it by displaying magnetic field data. 

 

Interestingly, Ware points out that the three texture dimensions, size, contrast, and 

orientation, although perceptually orthogonal, are also intrinsically linked.  For example, when 

contrast is zero, neither size nor orientation is visible, and when the size of the element is small, 

orientation is difficult to see [Ware and Goss, 1992].   

 

In earlier investigations, we considered mapping one spatial variable to the height of the 

Gaussian, as for the DDS bump-mapped layers, while mapping another spatial variable to the width 

of the Gaussian, which stretched the Gaussians from circular to elliptical.  As described in Chapter 

Four, Ware [2000] describes such a mapping of data to display element as integral, because shape 

characteristics such as length and width are not processed independently, but form a holistic unit.  I 

found it difficult to see the two variables separately, when they mapped to the height and width of the 

Gaussians.   
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 Why Spots? 

Through experimentation during the development of the DDS technique, I found that textures 

such as the examples from the Brodatz album, spot noise, and reaction-diffusion stripes are not 

suitable as visually separable layers, because the textures are too complex visually.  Yet, the question 

remains: Why spots?  Why not use a different underlying display element, such as an ellipse or a 

square, one that is replicated throughout the texture and does not change in size with the data?  Is the 

spot shape a critical component to the success of the DDS technique? 

 

 Figure 2.13 illustrates one of the reasons Gaussian spots are used as the underlying texture 

feature in the Gaussian sampling arrays instead of another shape primitive, such as a square.  Both the 

spot simplicity of shape and continuity of form mean the spot is an ideal inducer of subjective 

contours – this is clear in Figure 2.13(a) where the illusory square on the left is much more strongly 

visible than the one on the right.  The cusps in 2.13 (a) appear to be caused by an overlapping square, 

whereas the cusps in 2.13 (b) appear to be part of the underlying shape.  The key difference is that the 

cusps in 2.13 (a) create a discontinuity in the circle inducers – something that our visual system treats 

is less likely, whereas the cusps in 2.13 (b) occur in the underlying inducer and therefore our visual 

system does not need to create the overlapping square to explain the cusps visually.  [Hoffman, 1998] 

     
(a) (b) 

 
Figure 2.13:  “Magic Square” images based on [Hoffman, 1998].  The subjective square is stronger in the 
images on the left, due to the cusps in the circular inducers.  Although (b) also has cusps, they are less unique 
and are attributed to the underlying inducers instead of the subjective square. 
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Kennedy and Ware [1978] showed that illusory contours could be created by collections of 

spots as the inducers, as in Figure 2.14.  When spots are grouped together to make a good figure, as 

defined by the area of Gestalt psychology, strong subjective contours occur.  The images in their 

paper are the first evidence that a technique like DDS could work.  DDS, by using spots as the 

underlying sample unit, produces strong subjective contours along data boundaries.  This is a 

powerful way to harness human visual perception for data display. 

 

Textures suffer from the same contrast effects found in color images and discussed earlier.  

Figure 2.15, based on Ware and Knight [1992], shows this effect.  To counteract this texture size 

contrast effect, DDS uses a unique hue for each spot layer, which provides a redundant cue for 

grouping spots within each layer. 

 

     
(a)       (b) 

 
Figure 2.14:  The Kinazsa triangle (a) and the Kinazsa triangle induced by collections of spots (b) (image based 
on [Kennedy and Ware, 1978]). 
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Figure 2.15:  Texture size contrast image based on [Ware and Knight, 1992].  Notice the apparent size 
difference when the medium-sized spots contrast with large versus small spots. 


